
Compute a population table (data) from frequencies (description).
Source:R/comp_popu.R
comp_popu.Rdcomp_popu computes a table popu (as an R data frame)
from the current frequency information (contained in freq).
Usage
comp_popu(
hi = freq$hi,
mi = freq$mi,
fa = freq$fa,
cr = freq$cr,
cond_lbl = txt$cond_lbl,
cond_true_lbl = txt$cond_true_lbl,
cond_false_lbl = txt$cond_false_lbl,
dec_lbl = txt$dec_lbl,
dec_pos_lbl = txt$dec_pos_lbl,
dec_neg_lbl = txt$dec_neg_lbl,
sdt_lbl = txt$sdt_lbl,
hi_lbl = txt$hi_lbl,
mi_lbl = txt$mi_lbl,
fa_lbl = txt$fa_lbl,
cr_lbl = txt$cr_lbl
)Format
An object of class data.frame
with N rows and 3 columns
(e.g., "X/truth/cd", "Y/test/dc", "SDT/cell/class").
Arguments
- hi
The number of hits
hi(or true positives).- mi
The number of misses
mi(or false negatives).- fa
The number of false alarms
fa(or false positives).- cr
The number of correct rejections
cr(or true negatives).- cond_lbl
Text label for condition dimension ("by cd" perspective).
- cond_true_lbl
Text label for
cond_truecases.- cond_false_lbl
Text label for
cond_falsecases.- dec_lbl
Text label for decision dimension ("by dc" perspective).
- dec_pos_lbl
Text label for
dec_poscases.- dec_neg_lbl
Text label for
dec_negcases.- sdt_lbl
Text label for 4 cases/combinations (SDT classifications).
- hi_lbl
Text label for
hicases.- mi_lbl
Text label for
micases.- fa_lbl
Text label for
facases.- cr_lbl
Text label for
crcases.
Value
A data frame popu
containing N rows (individual cases)
and 3 columns (e.g., "X/truth/cd", "Y/test/dc", "SDT/cell/class").
encoded as ordered factors (with 2, 2, and 4 levels, respectively).
Details
By default, comp_popu uses the text settings
contained in txt.
A visualization of the current population
popu is provided by plot_icons.
See also
read_popu creates a scenario (description) from data (as df);
write_popu creates data (as df) from a riskyr scenario (description);
popu for data format;
num for basic numeric parameters;
freq for current frequency information;
txt for current text settings;
pal for current color settings.
Other functions converting data/descriptions:
read_popu(),
write_popu()
Examples
popu <- comp_popu() # => initializes popu (with current values of freq and txt)
dim(popu) # => N x 3
#> [1] 1000 3
head(popu)
#> True condition Outcome Cases
#> 1 present positive TP
#> 2 present positive TP
#> 3 present positive TP
#> 4 present positive TP
#> 5 present positive TP
#> 6 present positive TP
# (A) Diagnostic/screening scenario (using default labels):
comp_popu(hi = 4, mi = 1, fa = 2, cr = 3) # => computes a table of N = 10 cases.
#> True condition Outcome Cases
#> 1 present positive TP
#> 2 present positive TP
#> 3 present positive TP
#> 4 present positive TP
#> 5 present negative FN
#> 6 absent positive FP
#> 7 absent positive FP
#> 8 absent negative TN
#> 9 absent negative TN
#> 10 absent negative TN
# (B) Intervention/treatment scenario:
comp_popu(hi = 3, mi = 2, fa = 1, cr = 4,
cond_lbl = "Treatment", cond_true_lbl = "pill", cond_false_lbl = "placebo",
dec_lbl = "Health status", dec_pos_lbl = "healthy", dec_neg_lbl = "sick")
#> Treatment Health status Cases
#> 1 pill healthy TP
#> 2 pill healthy TP
#> 3 pill healthy TP
#> 4 pill sick FN
#> 5 pill sick FN
#> 6 placebo healthy FP
#> 7 placebo sick TN
#> 8 placebo sick TN
#> 9 placebo sick TN
#> 10 placebo sick TN
# (C) Prevention scenario (e.g., vaccination):
comp_popu(hi = 3, mi = 2, fa = 1, cr = 4,
cond_lbl = "Vaccination", cond_true_lbl = "yes", cond_false_lbl = "no",
dec_lbl = "Disease", dec_pos_lbl = "no flu", dec_neg_lbl = "flu")
#> Vaccination Disease Cases
#> 1 yes no flu TP
#> 2 yes no flu TP
#> 3 yes no flu TP
#> 4 yes flu FN
#> 5 yes flu FN
#> 6 no no flu FP
#> 7 no flu TN
#> 8 no flu TN
#> 9 no flu TN
#> 10 no flu TN